challenges in civil engineeringeducation and proposing educational reforms and initiatives to address these challenges. At the1995 Civil Engineering Education Conference, 235 participants considered a wide range ofissues and collectively identified four major areas for focused action by ASCE: (1) facultydevelopment, (2) an integrated curriculum, (3) practitioner involvement in education, and (4) thefirst professional degree.1Following the 1995 conference, the ASCE Educational Activities Committee (EdAC) assumedresponsibility for the faculty development issue area. EdAC proposed to the ASCE Board ofDirection that a standing Committee on Faculty Development be established and provided withfunding to plan and implement a teaching effectiveness workshop
certified as an EFL and ESL teacher as well as a School Principal. Ari’s research and language revitalization interests include Mikasuki, Salish Ql’ispe (aka Salish-Pend d’Oreille, Montana Salish, and Flathead Salish) and Safaliba. His ethnographic work documents situated practice in grassroots policy initiatives and school-based activism among the Safaliba in rural Ghana. His language documentation includes conceptual metaphors and formulaic language in Salish Ql’ispe and Safaliba. He also explores applications of task-based language teaching in the pedagogy of revitalization. His practitioner papers analyze integrated content and language instruction, academic English instruction for graduate students, and asset-based
in ways that reinforce existing power structures. This underscores theimportance of critically assessing educational materials for their role in upholding or challenginghegemonic narratives within the engineering discipline and broader society–an avenue that wewish to explore further.From an STS perspective, policy is considered an integral part of infrastructure, as it shapes thecontext of the specific places in which scientific and technological work unfolds. Policies dictatewhat is built, how it is used, who has access to it, and the norms of its use and conversely, theconsequences of a lack of transparent policy around how spaces are regulated. Yet, policies alsomust be translated and performed, and those performances are in part guided
. Person C: (nodding) Actually, I needed that too. Person A (host): Thanks for letting us know. Come to think of it, we've been going for a while, so why don't we do one more discussion round and then take a 15-minute break? (people nod agreement; discussion continues).In an engineering education context, we have used the Circle Way format to facilitate facultydiscussions on engineering curriculum design. We have also used it as the discussion format fora graduate-level course on signal processing, where technical topics discussed in the prior week’sclass were placed in the center for the class to explain, comment on, and ask questions about.The Circle architecture can be used to hold both intellectually and affectively difficult
online resources such as the Mentor-Connectwebsite and webinars had been informative and motivating. Two others specified that havingface-to-face interactions via the Grant-Writing Workshop had enhanced their overall experience.A few representatives from Cohort 2 did volunteer some specific recommendations. However,these emerged on an individual basis, precluding the development of cohesive themes on thistopic. Instead, the recommendations are detailed individually: • One respondent stated that he/she would like to share curriculum that his/her program had developed using ATE funds with other institutions. While not directly related to improvements in Mentor-Connect per se, the representative would have appreciated guidance
data framein the pre-program data was not collected from an identical frame in the post-program datacollection. In effect, this would bolster the representation of women in their programs notbecause more women were recruited, but because the set of units used for the data wereexpanded to include new, more gender-balanced sub-disciplines. However, because ES-UPrecommends creating these types of program expansions or features (“multiple pathways”) as away to increase women, variation in the data frame speaks to the benefits of using this strategy.Nonetheless, the authors were not able to identify if this had occurred among the seven schoolsused in the study.References[1] U.S. Department of Education, “Integrated Postsecondary Education Data
sense of global citizenship totake hold in a student's life in both present and future behaviors.MethodsThis research is part of a larger study funded by the National Science Foundation invested indeveloping curriculum tools to teach sustainability more effectively as an integrated part ofcoursework from sophomore to senior year in engineering and other science majors. This largerstudy is currently in its third year and operates on the principle that certain majors/disciplineshave unique psychographic characteristics that influence the manner in which they engage insustainability topics and that best practice instruction methods for engineering students are likelyto differ from those in other disciplines.The institution involved in this study
environment (ALOE) to provide a practical learning environmentthat facilitates developing many of the needed technical and soft skills without the inherentdifficulty and cost associated with radio frequency components and regulation. We define sixlearning stages that assimilate the standardization process and identify key learning objectivesfor each. We discuss our experiences when employing the proposed methodology at BarcelonaTech in Spain, compare the approach with an equivalent class at Virginia Tech in the US andmake the following observations: (1) The complexity of standards need to be abstracted andpresented in a form suitable for a given class. (2) Educating about cellular communicationsstandards is most effective when students are immersed
reliable ethicalpractices. Engineering ethics is defined as: “(1) the study of moral issues and decisionsconfronting individuals and organizations involved in engineering and (2) the study of relatedquestions about moral conduct, character, policies, and relations of people and corporationsinvolved in technological activity” [1]. Engineering ethics has been increasingly emphasized inengineering curricula. The Accreditation Board of Engineering and Technology (ABET) hasspecific student outcomes related to ethical considerations. Despite the need for ethical decision-making among the undergraduate civil engineers, incorporating ethics into the curriculum hasnot been an easy task.In some academic institutions, ethics courses could be offered by a non
/03043797.2016.1158789 [2] A. Yadav, D. Subedi, M. Lundeberg, and C. F. Bunting, “Problem-based Learning: Influence on Students’ Learning in an Electrical Engineering Course,” Journal of Engineering Education, vol. 100, no. 2, pp. 253–280, Apr. 2011, mAG ID: 2137085812. [3] A. Wiek, A. Xiong, K. Brundiers, and S. van der Leeuw, “Integrating problem- and project-based learning into sustainability programs: A case study on the School of Sustainability at Arizona State University,” International Journal of Sustainability in Higher Education, vol. 15, no. 4, pp. 431–449, Aug. 2014. [Online]. Available: https://www.emerald.com/insight/content/doi/10.1108/IJSHE-02-2013-0013/full/html [4] A. C. B. Reis, S. C. M. Barbalho, and A. C. D. Zanette, “A
., 2017). Lastly, consumers often believe that they want a product that is loadedwith features but later may be overwhelmed by the product’s complexity (Rust et al., 2006). Itbecomes clear that a sharper focus on stakeholders and features is a critical requirement forproduct success and an integrated approach is needed to help students navigate thesecomplexities. A systems engineering approach for undergraduate design education has been applied in firstyear to capstone design courses to help students with designing systems (Simoni, et al., 2016).The advantages of the approach are that one set of models or views is applicable to a widevariety of design problems making the common approach easier for students to learn and facultyto teach and assess
Paper ID #16481Leveraging New Platforms to Provide Students with a Realistic SoC DesignExperienceDr. Andrew Danowitz, California Polytechnic State University, San Luis Obispo Andrew Danowitz received his PhD in Electrical Engineering from Stanford University in 2014, and is currently an Assistant Professor of Computer Engineering at California Polytechnic State University in San Luis Obispo. His engineering education interests include student mental health, retention, and motivation.Antonio Leija, California Polytechnic State University, San Luis Obispo Antonio Leija is now a Test Engineer at Green Hills Software in Santa
inindustry or in everyday life.A common complaint from industry regarding new engineering graduates is their lack of hands-on practice [4], particularly with actual equipment. This may be due in part to the general lack ofactual engineering experience for engineering faculty [5]. Ralston and Cox write, “Leaders inU.S. engineering education point to increased ‘real world’ skills as crucial for meeting thechallenges of engineering in the future” [6].Experience plays a central role in the learning process [7] and therefore is an important part ofthe engineering curriculum. Kolb writes, “Knowledge results from the combination of graspingand transforming experience. Grasping experience refers to the process of taking in information,and transforming
their preparedness for the program they have undertaken, their ability andlevel of commitment to meet the demands of a challenging curriculum, their capability to becompetitive in their field after graduation, and whether their academic workload leading todiminishing quality of life in other areas. These sources of anxiety may be exacerbated for firstgeneration college students, students suffering under financial duress, or both.Studies of anxiety remediation strategies among engineering students are typically conductedwith an eye to improving a particular course or program overall so as to benefit future students.While these efforts may result in average or program-cultural decreases in student anxiety, pointsources of anxiety for individual
National Science Foundation Graduate Research Fellow. He received his B.S. in Civil Engineering in 2011 with a minor in philosophy and his M. S. in Civil Engineering in 2015. His research focuses on understanding engineers’ core values, dispositions, and worldviews. His dissertation focuses on conceptualizations, the importance of, and methods to teach empathy within engineering. He is currently the Education Director for Engineers for a Sustainable World and an assistant editor for Engineering Studies.Mr. Paul D. Mathis, Purdue University, West Lafayette Engineering Education PhD undergraduate student at Purdue University. Previously a high school educa- tor for six years with a masters in education curriculum and BS
Paper ID #14546More Comprehensive and Inclusive Approaches to Demographic Data Col-lectionMr. Todd Fernandez, Purdue University, West Lafayette Todd is a PhD Student in Engineering Education at Purdue University who’s research is focused on en- trepreneurship education and entrepreneurship education as a component of modern engineering educa- tion efforts.Dr. Allison Godwin, Purdue University, West Lafayette Allison Godwin, Ph.D. is an Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through
components of the system is shown in Figure 2. Fig. 2: Block Diagram of UHD Sustainability Garden Automated Irrigation SystemTo collect solar energy, two RENOGY® 250W mono-crystalline black photovoltaic panels areused6 (Figure 3). An Air Primus Air40 wind turbine7 (Figure 4) is used to provide a secondarysource of energy in addition to the solar panels. The wind turbine is mounted to a steel pole at aheight of 23’ and contains an integrated charge controller that allows the wiring to be directlyconnected to the battery bank. It requires a 7 mph wind to begin spinning the turbine blades. Therated output is 160 watts given a 12 mph wind speed.Other major components of the renewable system include the batteries for energy storage (two100 Ah
participation inthoughtfully organized service that is conducted in and meets the needs of the communityand that is integrated into and enhances the academic curriculum of the students; andprovides structured time for the students to reflect on the service activity in such a way asto gain further understanding of course content. (Bringle & Hatcher, 1995) The studentsdo a verbal reflection once every 2 weeks. The plan is to provide the following questionstowards the end of the project. This will help us have a record of what students havelearning. Page 26.1367.5There are currently about 15 active members in SWID and 5 of them are working on thecommunity
hasspecific objectives that will support these goals. They are: (1) develop and maintain an effectiveliaison between BRCC and LSU; (2) utilize scholars to develop a peer ambassador/mentorprogram facilitating transfer success; (3) establish and conduct a pre-transfer academiccounseling program; (4) expand existing seminars to orient and integrate BRCC and othertransfer students into LSU and (5) invite BRCC math, science and engineering faculty toparticipate in ongoing Faculty Development.Activities of the program to date have included outreach, professional development, advising,and developing an overall assessment tool. All scholars participated in outreach activities thatconsisted of Peer-to-Peer talks at BRCC each semester and Shadow Days at LSU
, why he wanted to be a BME major, and how he now believed he had amisconception of BME: They have a biochemistry degree at the school I'm at. I'm in biomedical engineering and I guess when I got into it I thought it was more like that laboratory track where you work under somebody helping them do their research or whatever. But I think now that I've seen about half of it, I can tell its hardcore engineering which I was not expecting it to be. (Derek)Derek now faced the conflict of having an ideal future possible career that was no longerconnected to his present tasks. He described the curriculum as being a major factor in his choiceand his feelings of being stuck in engineering: I really wanted
experience at the Indian Institute of Science, Bangalore, India. She is currently pursuing Ph.D. in Mechanical Engineering at NYU Tandon School of Engineering. She is serving as a research assistant under an NSF-funded DR K-12 re- search project to promote integration of robotics in middle school science and math education. For her doctoral research, she conducts mechatronics and robotics research in the Mechatronics, Controls, and Robotics Laboratory at NYU.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in
Paper ID #42603Transition to the Civilian Workforce: Themes and Lessons from MilitaryService and CultureDr. Alyson G. Eggleston, Pennsylvania State University Alyson Eggleston is an Associate Professor in the Penn State Hershey College of Medicine and Director of Evaluation for the Penn State Clinical and Translational Science Institute. Her research and teaching background focuses on program assessment, STEM technical communication, industry-informed curricula, and educational outcomes veteran and active duty students.Dr. Angela Minichiello, Utah State University Angela (Angie) Minichiello is a military veteran, licensed
Paper ID #21103Case Study of a Blind Student Learning Engineering GraphicsDr. Steven C. Zemke, Whitworth University Steven Zemke, Ph.D., has been involved in engineering design and teamwork for 40 years as a professional engineer, university professor, and researcher. He is a Professor of Engineering and Physics at Whitworth University in Spokane, Wash., and teaches physics and engineering courses. His current research is in how students learn engineering with a focus on creating more effective pedagogies. Prior to teaching, Dr. Zemke was a professional product designer for 20 years with an emphasis on mechanical packaging
discussions among international engineeringdirectors, peer institutions expressed interest in a network of Global Engineering Fellows. Aninternational network of Fellows could establish a replicable program framework, standards, anddesirable outcomes at universities across the globe. Such a network could lead the way inleveraging globally minded engineering students throughout the world towards a commonpurpose, uniting students who are equipped with the capabilities to lead and inspire the world.An international network would oversee: • Standards for organization, such as an ethos, course curriculum, participant prerequisites, program requirements, assessment, and partner responsibilities. • Coordination of an annual project to promote
, MA from Katholieke Universiteit, Leuven, and BA from Fordham University.Dr. Scott Streiner, University of Pittsburgh Scott Streiner is an Assistant Professor in the Industrial Engineering Department, teaches in the First-Year Engineering Program and works in the Engineering Education Research Center (EERC) in the Swanson School of Engineering at the University of Pittsburgh. Scott has received funding through NSF to conduct research on the impact of game-based learning on the development of first-year students’ ethical reason- ing, as well as research on the development of culturally responsive ethics education in global contexts. He is an active member of the Kern Engineering Entrepreneurship Network (KEEN
-socioeconomic students as an often understudied population. Justin has served as the ASEE Student Division Co-Program Chair and is a current Director of Special Projects for the Educational Research & Methods Division.Dr. Allison Godwin, Purdue University, West Lafayette (College of Engineering) Allison Godwin, Ph.D. is an Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical
Programs. His duties entailed working with prospective freshmen and transfer engineering students. In 2018, he transitioned to the role of Assistant Research Professor in the Department of Bioengineering at the Clark School. His research interests transfer students who first enroll in community colleges, as well as developing broader and more nuanced engineering performance indicators.Ms. Shannon Hayes, University of Maryland, College Park Shannon Hayes currently serves as the Assistant Director of Transfer Student Advising & Admissions in the A. James Clark School of Engineering. Prior to working in the Clark School, Ms. Hayes served as an Academic Advisor in the College of Education at UMD, where she worked with
classes met on Saturdays for 2 or 3 hours of instruction for 5 weeks over the wintersemester. The emphasis was on hands-on experiential learning in a fun and relaxing environment. Wedrew activities from the ANS ‘Navigating Nuclear” curriculum as well as other related STEAM sites suchas NASA and DOE. Students who successfully complete d the classes were awarded certificates ofcompletion (Fig. 16). Instructors for these classes came from our STEAM faculty at our campus plus ourcollaborating universities as well as the nuclear industry and our local K-12 teachers. As pertains to ourcollege students, we had them participating in the outreach (Fig. 7), conferences (Figs. 8 & 9) and hopingfor rigorous summer internships to be identified with the
Project Ponderosa – Bridging Engineering Education to Vocational Training Dr. Scott Boskovich, California State Polytechnic University, Pomona, CA 91768 and Dr. Chris Burns, Boys Republic, Chino Hills, CA 91709AbstractThe application of robotics and automation in industry continues to be an increasing area ofgrowth. Subsequently, this requires an increased demand for design engineering students as wellas knowledgeable users trained for equipment maintenance. However, this can becomeproblematic to adequately provide a realistic environment for both teaching design of roboticssystems as well as the maintenance. In recent years
Paper ID #41515Surveying the Landscape: Exploring STEM Instructors’ Selection Criteriafor Instructional MaterialsElizabeth Dawson, Northern Arizona University Elizabeth Dawson is earning her Ph.D. in Curriculum and Instruction at Northern Arizona University. Her research focuses on the intersection of Open Education and academic libraries. Her interests encompass instructional library resources with an emphasis on STEM, library identity and campus leadership, and student belonging in the library. She is the Technical Services Librarian at Arizona Western College.Ms. Susan Wainscott, University of Nevada, Las Vegas Susan